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QUALITATIVE MATRICES:

STRONG SIGN-SOLVABILITY AND WEAK SATISFIABILITY

VICTOR KLEE and RICHARD LADNER

Introduction

The study of "qualitative" linear systems was suggested by Paul

Samuelson in 1947 in his influential book on Foundations of Economic

Analysis [29). Since then it has been carried on by economists, mathe-

maticians, ecologists and chemists, with emphasis on questions of quali-

tative solvability and qualitative stability. Survey articles have been

written, and references collected, by Maybee and Quirk [24), Maybee [23)

and Quirk [28). The present paper is devoted to a rather general form

of qualitative solvability, of which strong sign-solvability is a spe-

cial case, and to a closely related notion, weak satisfiability, from

propositional logic.

The simplest qualitative conditions are those involving sign-patterns.

For a (real) m x n matrix A - (aij) , let Q(A) denote the convex cone

consisting of all matrices that have the same sign-pattern as A . Thus

a matrix B - (bij) belongs to Q(A) if and only if B Is an m x n

matrix with sgn bij = sgn aij for all i and j . Here agn is -,

0 or + according to whether the real number T is < 0, - 0, or > 0

Points of Rm  are taken as column matrices unless the contrary is

specified. For c e Rm , (A:c) will denote the linear system whose coef-

ficient matrix Is A and "constants colum" is c . The system (A:c)

is said to be si8gn-aoZabZe if A is square, the system is solvable, and
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both its solvability and the sign-pattern of its solution depend only on

the sign-patterns of A and c . That is, there exists x vith Ax - c

such that for each B e Q(A) and de Q(c) it i; true that (1) there

exists y with By - d and (ii) for each such y , Q(y) - Q(x) . The

system (A:c) is etrongZl eign-8olvable if there exists x as described

with all coordinates of x different from 0

As is shown in Section 1, the study of strong sign-solvability is

easily reduced to the study of what we call S-matrices. An S-'trix is

an m x (m+ 1) matrix A such that for each B c Q(A) and x R 1

with Bx - 0, all coordinates of x are of the same sign; equivalently,

each such B has as its nullspace a line that intersects the open posi-

tive orthant of R In 1962 Lancaster [18) suggested a general form

for S-matrices; more inclusive forms were then described by Gorman [12)

and Lancaster [19J. In 1965 Lancaster [20] initiated the algorithmic

approach to S-matrices, based on duality properties of convex cones. Two

central problems have been those of finding:

(a) a small collection of "standard forms" of S-matrices to which

all such matrices can be reduced by certain elementary trans-

formations;

(b) a fast algorithm for the recognition of S-matrices.

(The algorithms of Lancas'ter [20, 21) are of exponential complexity.)

It Is not clear to us that one should expect a truly useful solution

of (a). In any case, Section 2 describes som ways of constructing S-

matrices and the closely related NW-matrices. A conjecture of Gorman [12]

is elucidated but not settled.
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In Section 4 the goal (b) is attained by reducing the S-matrix recog-

nition problem to a sequence of m2 + 2m + 2 linear feasibility tests.

For the recognition of S-matrices, per se, it Is probably more efficient

to use the graph-theoretic characterization of sign-solvability established

by Bassett, Maybee and Quirk [2) and discussed further by Maybee [22, 23].

However, our method goes considerably beyond the case of S-matrices, apply-

ing whenever the columns of the m x (m + 1) matrix A are restricted

only by membership in given polyhedral cones. If the feasibility tests are

made by means of the recent Shor-Khachian method (15, 31], the worst-case

complexity of our algorithm is bounded by a polynomial in the length of the

binary encoding of the description of the cones. Though the Shor-Khachian

procedure is not well-suited to actual computation (see the comnents in Sec-

tion 4), this result is of theoretical interest because the S-matrix recog-

nition problem is in a sense close to the boundary of NP-completeness.

In the language of propositional logic, recognizing that a given

m x (m + 1) matrix is not an S-matrix amounts to recognizing that an asso-

ciated Boolean formula, consisting of the conjunction of n + I disjunctive

clauses in n propositional variables, is weakly satisfiable. Although

this problem can be solved in polynomial time, we show in Section 3 that for

each k > 0 the problem of recognizing the weak satlsfiability of n + Lnl/k

clauses in n variables in NP-complete.

The section headings are as follows: fl. Strong sign-solvability,

S-matrices and weak satisfiability; 12. Constructions of NW-matrices;

53. The recognition of weak satisfiabillty; 14. The recognition of S-

matrices; 15. Open problems.

4 A
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1. Strong Sign-solvability, S-matrices and Weak Satisfiability

The following remark is straightforward.

THEOREM I If c is a column of an S-matrix A and B is the square matrix

formed by A's other colwuns then the system (B:c) is strongly sign-solvable.

Now suppose, conversely, that B is an m x m matrix, the system (B:c) is

strongly sign-solvable, and Bx - c . Let A be the m x (m + 1) matrix

whose (m + 1)th column is -c and whose jth column is (for 1 s j s m)

the jth column of B or the negative of that column according as xj > 0

or xj < 0 . Then A is an S-matrix.

In view of condition (ii) of the next result, we may regard S as standing

for "simplex" as well as for "strongly sign-solvable". We could avoid (ii),

and establish the equivalence of (i) and (iii) directly, by appealing to stand-

ard results on convex polyhedral cones (9, 11]. In fact, that was done by

Lancaster [20]. However, we want to include (ii) because it provides useful

geometric insight. A more geometrical formulation of (iii) is as follows:

for each open half space H in Rm whose bounding hyperplane passes through

the origin there is a column v of A such that the cone Q(v ) is con-

tained in H

THEOREM 2 Suppose that A is an m x (m + 1) matrix and v1,...,vm+ 1

are the colwrms of A . Then the following three conditions are equivalent:

(1) A is an S.-matrix;

(ii) for each choice of c I C Q(Vl),...,cm+ I  Q(V+), the cj's

are the vertices of an -eimpZex whose interior contains the

(iii) for each nonzero z c I'm there eiste j such that ctZ > 0

for all cc Q(vj).
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Proof. Suppose first that (I) holds and let c£ e Q(v ) for

1 j S m + 1 . Let B be the m x (m + 1) matrix whose Jth column

is c . Since the rank of B is at most m , there exists a nonzero

x such that Bx - 0 . By (i), each such x has exclusively negative

or exclusively positive coordinates, whence it follows readily that the

set (c ,...,c 1) is affinely independent and the origin is a strictly

positive convex combination of the cj's . But that is the content of

(ii) . Hence (i) Implies (ii), and the argument is easily reversed to

show (ii) implies (I).

If (iii) fails there exists z 0 0 and there exist c C Q(V

t
c Q(vu+ I) such that c z : 0 for all j . Plainly that contradicts

(ii), and hence (ii) implies (iii). Suppose, finally, that (ili) holds

and cj c Q(v1 ) for 1 S J s m + I . Let K denote the convex hull of

the c 's . It follows from (Ii) that K intersects every open halfspace

whose bounding hyperplane passes through the origin. But then the origin

must be interior to K , and since K has at most m + I vertices it must

in fact be an m-simplex. That shows (Ii) implies (ii) and completes the

proof of Theorem 1. 0

Now let us define a W-matrix as an m x n matrix A for which there

exists B e Q(A) and nonzero x c R with Bx k 0 (that Is, each coor-

dinate of Bx Is a 0). An NW-matzqz is one that Is not a W-matrix. Con-

dition (i) above asserts the transpose At is an NW-matrix. In terms

of the notions defined in the next paragraph, W may be regarded as stand-

Ing for "weakly satisfiable". The connection with satisfiability In propo-

sitional logic is clarified in Section 3.

t¢
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When x = (x,...,x) and y - (yl,...,yn) are ordered n-tuples

of real numbers, we say that x hits <resp. satisfies) y if there

exists J such that xjyj # 0 (resp. > 0); and x misses y if x

does not hit y . Further x weakly satisfies y if x satisfies y

or x is nonzero but misses y . And x weakly satisfies the m x n

matrix A if x weakly satisfies each row of A . Note that A is

weakly satisfiable if and only if A is a W-matrix.
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2. Construction of NW-matrices

In constructing m x n NW-matrices, we are especially interested in

those for which m - n + I , since they are the transposes of S-matrices.

When m S n there are no m x n NW-matrices because each set of n points

in Rn  lies In a closed halfspace whose bounding hyperplane passes through

the origin.

If A is an NW-matrix then so is every matrix obtained from A by

permuting rows, permuting columns, replacing columns by their negatives,

and changing the magnitudes (but not the signs) of individual entries.

These operations provide the natural equivalence relation for NW-matrices.

Since only sign-patterns are involved, each equivalence class may be repre-

sented by various arrays of the symbols -, 0 and +. We take as the canonicaZ

representative the one which is lexicographically first when each matrix is

considered as the sequence formed by writing down its successive rows. The

lexicographic ordering is based on the ordering - < 0 < + of the sign-

symbols. Thus, for example, - and + are the two 2 x I NW-matrices and

is the canonical representative because -+ precedes +- in the lexi-

cographic ordering. Fig. 1 shows the two canonical representatives of the

3 x 2 NW-matrices.

-+ 0+

+0 +0

Fig. 1: The two canonical 3 x 2 NW-matrices and associated 2-simplices
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By means of a computer search we have verified that there are precisely

ten equivalence classes of 4 x 3 NW-matrices. Their canonical representa-

tives are shown in Fig. 2.

+ + 0+ -0+ -0+
-+0 0+0 -+0 0+- 0+0
+00 +00 +00 +00 +00

-- 0 -- 0 -- 0 -- 0
00+ -0- -+0 -+0 00-

0+0 0++ 00- +0- 0+0
+00 +00 +0+ +0+ +0+

Fig. 2: The ten canonical 4 x 3 NW-matrices

Each of the 3 x 2 classes can be constructed from the 2 x I class

in the manner shown in Fig. 3, and all but the next-to-last 4 x 3 class

arises from a 3 x 2 class in the same way. In Fig. 3, the new row has

all entries 0 except for a single nonzero s(- or +) in the new column

has s in the new row, Is in some other position, and its remaining

entries are all 0 or IS . (We agree that '- is + and '+ is -

I m

'S A n

a ... 01

Fig. 3: Forming an (m + 1) x (n + 1) NW-matrix

from an m x n NW-matrix A

With m -m 2 -k- 2 and n 1 n - C - I , the construction shown

in Fig. 4 yields a 4 x 3 NW-matrix that is equivalent to the next-to-last

one of Fig. 2. In general, one starts from a k x t NW-matrix C and
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m i x n NW-matrices Ai for 1 :9 1 k to obtain an (m+ ...+m.n) x

(L + n I + ... + nk ) NW-matrix. Here the entries not in the small boxes

are all 0 and for 1 5 i 5 k each of the mi rows of Ci is identical

to the ith row of C . (It actually suffices to have each row of Ci

either zero or identical to the ith row of C , with at least one row of

the latter sort for each i .)

L n1

m C1  A1

n2

m2 C2  A2

n k

Ck Ak

Fig. 4: Forming an NW-matrix from NW-matrices C, AI, ... , Ak

The constructions of Figs. 3-4 are very special cases of a general

construction based on partition-trees, which we now describe. A partition-

tree for a set X is an ordered pair (T, Y) that satisfies the following

conditions:

II
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(a) T is a rooted tree in which each internal node has at least

two sons;

(b) for each node j of T, Y(J) is a nonempty subset of X

(c) for the root r of T, Y(r) - X ;

(d) if i is an internal node of T and S(i) is the set of all

sons of I in T then {Y(j) : J c S(i)) Is a partition of

Y(i) -- that is, Y(j) n Y(j') 0 0 for each choice of distinct

J, J' c S(i), and ujs(i)Y(J) - Y(i) .

For our purposes, no generality is lost by adding the requirement that

X is a finite linearly ordered set and for each node j the set Y(J) is

an interval with respect to the ordering. Fig. 5 depicts a tree with root

r = I and node-set {1,...,8), Fig. 6 an associated partition-tree for the

set X = {1,...,1XJ

Fig. 5: A tree with root 1 and node-set {1,...,8)}I7
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1 1 1 I

2 2 2

3 3. 3 Y(7) 3

4 4 4 4

5 5 5
6 6 6 Y(6) Y(8)

8 8 81

9 9 191 Y(5)

10 1101 Y(3) Y(4)

110

Y(1) Y(2)

Fig. 6: A partition-tree for {l,...,11)

associated with the tree of Fig. 5

THEOREM 3 Suppose that (T, Y) is a partition-tree for the set {l,...m ,

I is the set of all internal nodes of T , and L is the set of all leaves

t of T for which IY(L)I 2 . For each I c I let Ai be an IS(i)I x n

NW-matrix and for each t e L let A. be a IY() x n. NW-matrix. Then

the following construction yields an m x (I n ) NW-matrix B '

JEIuL j

(i) For each t e L et B have nt coZrn. which, in the rows

oorresponding to {f...,m) - Y(L) (resp. Y(t) have all entries

0 'esp. a opy of At);

(ii) For each I e I et RI...RIS(I)I be the sets Y(J) for

J S(i) . oet B havenI oolwi im which have aZZ entries 0

in the rows oorreeponding to {...,.} Y(I) and which satisfy

the foZowing oondition for 1 s k ! S(i) : each row oorresponding

|
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to Rk has alt entries 0 oris a copy of the kth row of A, and

there is (for each k ) at Zeast one such oopy.

Before proving Theorem 2, let us illustrate its use in the construction

of NW-matrices. To obtain the construction of Fig. 3 from Theorem 2, let T

and Y be as in Fig. 7, let A1 be + or + ,and let A2 be the A of

Fig. 3. There is no A3 because IY(3)[ = I.

211

2 2

1 . ]

* n

3 n Y(2)

n+1

Y(1) Y(3)

Fig. 7: Obtaining Fig. 3's construction

as a special case of Theorem 2

To obtain the construction of Fig. 4 from Theorem 2, let T consist of a

root 1 directly joined to nodes 2,...,k + 1, let a - M for

I s j : k , and let Y(1) k ).,Ok}, Y(2) - {1,...,a j,..., Y(k + 1) =

(aiki + l,...,ok) • Let 'the A,, A2, ...,.Ak of Theorem 2 be respectively

the C, Al, ..., Ak  of Fig. 4.

For one more illustration, let (T, Y) be as in Figs. 5-6 and let

AI - A2  , A6 - A 7  ,A3  A 5 - + , A8 a 0 +
+0 +0

Because of the freedom allowed in (1i) In forming the columns of B cor-

responding to Internal nodes of T , the number of 11 x 10 NW-matrices

that can be constructed in the manner of Theorem 2 with the specified T,
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Y and A 's Is

(29 1) (22 1) (2- 1) (23- 1) (22 1) (2- 1)- 6,999,552.

In particular, if no use is made of the freedom allowed in (ii) (that is,

If each row corresponding to R Is a copy of the kth row of Ai), the

matrix of Fig. 8 Is obtained.

- 0 - - 0 0 + + 0 0

- 0 - - 0 0 + - - -

- 0 - - 0 0 - 0 0 +

- 0 - - 0 0 - 0 + 0

- 0 - - 0 0 - 0 0 0

- 0 - + - - 0 0 0 0

- 0 - + - + 0 0 0 0

- 0 - + + 0 0 0 0 0

- 0 + 0 0 0 0 0 0 0

+ - 0 0 0 0 0 0 0 0
+ + 0 0 0 0 0 0 0 0

Fig. 8: An 11 x 10 NW-matrix constructed by the method of Theorem 2

Proof of Theorem 2. Suppose there exists a matrix B which is weakly

satisfiable even though it is generated by a partition-tree (T, Y) and

by NW-matrices Aj in the manner of Theorem 2. Among all such B , con-

sider one for which the number of nodes of an associated T Is a minimmn.

With n - ljEIuL nj , the number of columns of B , let x - (xl,...,xn)

be an n-tuple that weakly satisfies B . Let H denote the set of all

nodes h of T such that x hits some row of B in the portion of B

that is generated by the node h and the NW-matrix Ah . Then H Is

nonempty, for all nonzero entries of 3 are generated in this way and no

column of 3 Is zero. Among all members of H , choose h0 closest to the
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root r of T in the sense that the path from r to h0 in T

intersects H only at h0 . Let T be the subtree of T that is

rooted at h0 and let B0 be the submatrix of B that is associated

with To . Then B0  is weakly satisfied by the relevant portion of x

and since B0  is also generated in the manner of Theorem 2 it follows

from the minimality of T that T 0  T and h0 - r . If r is a leaf

of T then B is the NW-matrix A and an imediate contradiction en-r

sues.

Now suppose that the root r Is an internal node of T , and let

x* denote the restriction of x to the column associated with r

Since x* 0 0 and A is an NW-matrix, there exist r' and k suchr

that (in the notation of (11) of Theorem 2) r' e S(r), I s k < IS(r)),

Rk - Y(r'), and x* hits but does not satisfy the kth  row of Ar

Let T' denote the subtree of T that is rooted at r' and let B'

denote the submatrix of B that is formed from the rows of B correspond-

ing to Rk  and the columns of B associated with nodes of T' . Let x'

denote the restriction of x to these columns. From the fact that x

weakly satisfies B while x* hits but does not satisfy the kth  row

of Ar  it can be deduced that x' weakly satisfies B' . But B' is

formed from T' and its associated Y(J)'s and A 's in the manner of

Theorem 2, contradicting the mininallty of T and completing the proof. 0

Gorman's 1964 conjecture [12) on the construction of S-matrices was

rephrased in (18, 23). In our terms, it mounts to saying that if k is

the class of all NW-matrlces that have exactly one more row than colums,

then each member of U is equivalent to one that is generated in the manner

I.



of Theorem 2 by a partition-tree (T, Y) and a collection of 11W-matrices

A a uch that T Is binary (each Internal node has exactly two sons) and

each A iIs +or ± . We have not settled this conjecture. More gener-

ally, let P denote any one of the following three construction procedures:

(a) combining the method of Fig. 2 with that of Fig. 3; (b) restricting the

method of Theorem 2 to binary trees; (c) using the method of Theorem 2 with-

out restriction. Then we are unable to say whether, for an arbitrary member

M of aj that has more than two rows, a member equivalent to M can be

generated by applying P to members of L4 that are smaller than M
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3. The Recognition of W-matrices

For an m x n matrix A , weak satisfiability can be tested in

0(Pnmn) steps by generating each of the 31 - I possibilities for the

sign-pattern of nonzero y . Rn and, as each one is generated, testing

to see whether it weakly satisfies each row of A . Similar procedures

were suggested by Lancaster [20, 21) for similar purposes. Although

these algorithms are finite and very easy to program, they are practical

only for small values of n . However, we show below that for general m

and n , and even for the cases in which m - n + n l1k for an arbitrary

fixed k > 0 , the problem of recognizing weak satisfiability is NP-complete

and hence algorithms requiring an exponential number of steps may be un-

avoidable.

It will be convenient, for the rest of this section, to change the

language from that of matrix theory to that of propositional logic. The

n columns of an m x n matrix A - (ajj) correspond to n propositional

variables ul,...,u n  and the m rows of A correspond to clauses C1 ,...,

Cm In the literals U1,...,Un, U1 ,...,n, where u stands for -u The

matrix A is represented by a Boolean formula

B - C1 A C2 A ... A Cm

in conjunctive normal form, where the clause Ci is the disjunction of

literals obtained from the I th row of A as follows:

appears in Ct  if and only if aij 0 ; u appears in Ci if

and only if ai 0; if ajj .0 then neither uj nor uj appears

in CI.
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An asaeignment for the variables u1,...,u n  is a function a {Ul,... ,

Un ( - (F, T) . A clause CI is satisfied by a if there exists j such

that uj appears in C, and a(uj) - T or uj appears in C1  and a(uj)

F . The formula B Is satisfied by a if each clause Ct in B is satis-

fied by a . The aatiefiability problem is that of recognizing formulas B

that are satisfiable. NP-completeness of this problem was established by

Cook [4], and that was the fundamental result from which the theory of NP-

completeness was developed by Karp [14) and others (see Carey and Johnson [10]

for an extensive survey). It seems very unlikely that the general satisfia-

bility problem admits a polynomially bounded algorithm.

A weak aaaigmnent for the variables ul,...,un is a function a : {ul,

... unI - (F, Z, T) (where Z may be regarded as standing for "zero") such

that for at least one J , a(uj) Z . A clause C is weakly satisfied

by a if Ci is satisfied by a or a misses Ci in the sense that a(uj) -

Z for all J such that uj or uj appears in C,. The formula B is

weakly satisfied by a if each Ci is weakly satisfied. The weak eatiofia-

bility problem is that of recognizing formulas B that are weakly satisfiable.

Plainly a matrix A is weakly satisfiable (that is, A is a W-matrix) if

and only if the corresponding Boolean formula B is weakly satisfiable.

Three examples serve to illustrate the above notions.

3 x 2 matrix Boolean Formula Properties

+ 0 (u) A (uI Vu 2 ) A (U IvU 2 ) Satisfied by a(u1) - T
+ - a(O2) F . Weakly satisfied

- - (but not satisfied) by a(uI) -
Z ,a(u 2) -F.
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3 x 2 matrix Boolean Formula Properties

+ 0 (u1) A (2) A ((2) Not satisfiable. Weakly satis-

0 + fled by a(u1) Z , c(u2) T

-0

+ + (uI V u 2) A (uI) V (u2) Not weakly satisfiable.

-0

0-

We now show how to reduce the satisfiability problem to the weak satis-

fliability problem. 4
THEOREM 4 Suppose that C1 ,..., Cm are clauses in the n variables Uo,...,

Un- 1and Di,... ,Dm  are clauses in the 2n variables uo,...,un1 , Vo,...,

v where D is obtained from Ci by replacing each occurrence of

with . Form 4n additionaZ c auses E,, F, G and H as foZZows,

where the subscript j ranges from 0 to m - 1 and j + 1 is reduced

modulo m

E is u v vj , Fj is V

G is j vuj+t v VJ+ , Hj is V_ V v v

For the formula B - C1 A ... A C. and the formula

B' -D A ... A Dm A EI A ... A En AF A .. AF nA

GAI ... A Gn A HI A ... A H n

the foZlowing three conditions are equivaZent: B is satisfiable; B' is

satisfiabZe; B' is weakly satisfiable.

Proof. If B is satisfied by an assignment a : (ul,...,un) (F, T)

then B' is satisfied by the assignment a' : (ul,...,u n o , V ,... } *

(F, T) , where a'(uj) - aluj) and al(vj) * (uj) . Conversely, if a'
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is any assignment that satisfies B' then the restriction of a' to

{ul,...,u n I satisfies B because from the satisfaction of E and F

if follows that a' assigns complementary values to uj and vj

To complete the proof we show that if 8 : {ul,...,un, Vl,...,vn } *

{F, Z, T) is a weak assignment that weakly satisfies B' then Z is

missing from the range of 8 , whence 8 is in fact an assignment that

satisfies B' .

By the definition of weak assignment, there exists k such that

B(Uk) Z or 8(vk) Z. For any such k , if B(uk) - T then 8 (vk)=F

by Fk , while if 0(uk) - F then 8(vk) = T by Ek . Similarly, if

B(vk) - T then 8(uk) - F by Fk, while if 0(vk) F then 0(uk) - T

by Ek.

It remains only to show, by induction on j , that if 8(uk) c {T, F)

then 8(uk+j) c {T, F) for all J . But if (uk+j) - T then by Gk+j

one of uk+j+ 1 and vk+j+ 1 must be assigned T , whence the other is

assigned F by the observation of the preceding paragraph. And if 8(uk+j) =

F then B(vk+j) - T , whence by H+j one of Uk+j+ 1 and vk+j+1 must be

assigned T ; hence the other is assigned F . That completes the induction

and the proof. 0

For each k > 0 , let the decision problem WSATk be as follows:

Instance: A Boolean formula B in conjunctive normal form, involving

a total of n propositional variables and consisting of the conjunction of

1/k
n + Ln l/ disjunctive clauses;

Question: Is B weakly satisfiable?
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THEOREM 5 For each k > 0 the problem WSATk is NP-complete.

kkProof. Plainly WSATk belongs to NP , so it suffices to describe

a polynomial reduction of SAT (the usual satisfiability problem) to

WSAT Consider an instance of SAT that concerns a Boolean formula

B in conjunctive normal form, involving a total of n propositional

variables and consisting of the conjunction of m disjunctive clauses.

Let the variables be uo,...,nu , introduce additional variables v0 ,... ,

vn_1  and let the formula B' be as in Theorem 4. Let r - (m + 2n + 1)k ,

introduce additional variables w...,Wr , and let B* be a not-weakly-

satisfiable formula consisting of the conjunction of r + 1 disjunctive

clauses in these variables (easily constructed with the aid of Theorem 1).

Finally, let B" denote the conjunction of B' and B* . Then B" con-

sists of m + 4n + r + 1 clauses and involves a total of 2n + r variables.

Since the inequality

m + 4n + r + 1 < (2n + r) + (2n + r)l/k

is equivalent to the valid inequality

k
(m + 2n + 1) < 2n + r,

some of the clauses of B" can be repeated if necessary to produce an

instance B"' of WSAT . From Theorem 4 and the fact that B* is not
k

weakly satisfiable, it follows that B is satisfiable if and only if B""

is weakly satisfiable. 0

As can be seen from the references in Garey and Johnson [10], there

are several other relatives of the satisfiability problem for which NP-

completeness has been established. See especially Schaefer [30).
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4. The Recognition of S-systems

As the term is used here, a cone is a nonempty subset C of Rm

such that

0 4 C - C + C - ]0,a[C *

Thus C omits the origin and is closed under vector addition and multi-

plication by positive scalars; in particular, C is convex. A cone is

polyhedral if it is defined by a finite system of linear inequalities.

An S-system is a sequence (Cl,...,Cm+1 ) of cones in Rm such that for

each m x (me+1) matrix B whose kth column belongs to Ck (1 - k < m + 1)

and for each x c RM +  with Bx - 0 , all coordinates of x are of the same

sign. Thus RP m x (m+l) matrix with columns Vl,...,Vm+1  is an S-matrix

if and only if the sequence (Q(VI),...,Q(Vm+I)) is an S-system.

Despite the NP-completeness result of Section 3 and the close relation-

ship between S-matrices and weak satisfiability, it can be determined in

polynomial time whether a given sequence of polyhedral cones is an S-system.

The algorithm is based on the following characterization.

THEOREM 6 If Cl,...,Cm+1 are cones in Rm PkEC for each k,

then the following four conditions are equivalent:

(i) (C 1 ,...,Cm+ 1 ) is an S-system;

(ii) for each choice of c1 C C ,...,cm+, Cm+ 1 , the Ck'O are the

vertices of an m-simplex whose interior contains the origin;

(Iii) for each nonzero z c Rm  there exists k such that ctz > 0

for aZZ CeCk;

(iv) for each choice of distinct r , s t 1,...,u+1} the Zinear huZ

of the set :pk r 0 k 0 a) is a hyper'p ane that strictZy sepa-

rates Cr from C a
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Proof. Conditions (i)-(iii) are merely the extensions, to general

cones, of the corresponding conditions of Theorem 2. The reasoning of

Theorem 2 applies here as well. Our algorithm is based on the equivalence

between (ii) and (iv), which will now be established.

If (ii) holds and ck c Ck for each k then the points ck are

affinely independent and the affine hull of any m of them is a hyperplane

in Rm  that misses the origin. This implies that each m of the ck's

form a linearly independent set, whence the linear hull of any m - 1 of

them is a hyperplane through the origin. The remaining two ck's are on

opposite sides of that hyperplane, for the origin is interior to the convex

hull of the k's . It follows that (ii) implies (iv).

Now suppose that (iv) holds, let r denote the set of all (m+l)-tuples

(CI,...,Cm+l) such that ck c Ck for all k , and let r* denote the set

of all (m + l)-tuples in r such that for each choice of distinct r ,

s a {l,...,m + 11 the linear hull of the set {ck : r 0 k 0 s} is a hyper-

plane that strictly separates Cr from Cs . Then (pl,...,Pm+l) c r* by

(iv), and we claim that in fact r* = r . To prove this it suffices to show

that if (cl,...,cm+I) c r* , 1 5 t m + 1 , and D is the set of all

d c Ct such that r* includes the (m + I)-tuple obtained from (c,,... ,

CM+,) by replacing ct with d , then DI - Ct .

For each e c C1  and each r c {,...,m + 1) ~ {) let

X r(e) - (e) u (ck : k It(, r),

and for each s c (1,...,m+ 1) - (r, 9) let

Xrs(e) - (e) u {ck : k 4 {t, r, ,))

The set X r(e) is linearly independent because the relevant Ck' are linearly

independent and their linear hull misses e . Hence the set X rs(e) is linearlyk rs
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independent and its linear hull is a hyperplane H rs(e) through the

origin. To show e c D it remains to show that H rs(e) strictly

separates C from C . Since ct c D , such separation does occurr s
when e c ) 0,-[ct . Hence if the desired separation fails to occur

for the e in question, there exists d c I cL,e [ e t, [c such that

H rs(d) intersects Cr or Cs . We suppose without loss of generality

that H rs(d) intersects Cr . Then there exists b e Cr and there

exist scalars )k such that

b = Xtd + lkk{t,r,s) kCk

Also, since the linear hull of {ck : r 0 k J s) is a hyperplane that

strictly separates Cr  from C , there are scalars Uk such that

b , iicL + 1ki4r,s1 'VCk

Plainly Xt < 0 and Ut < 0 . Since the set r(b) is linearly inde-
t Xr

pendent it follows from the two equations that d c ]0.,-[ct , a contra-

diction showing that D t - C . It follows, then, that r - r.

Now consider an arbitrary (m + l)-tuple (c,,...,C,+1) c r =r

and an arbitrary choice of scalars Yk such that 1' IYkck U 0 . If

there exist r and a such that yr < 0 Y y then all ykIs are 0 ,

as follows from the equation

Yc 5 aa (-Yr)Cr - Irk.s YkCk

in conjunction with the fact that the linear hull of (ck : r # k 0 a) is

a hyperplane that strictly separates cr from ca . This condition on the

yk' Implies the ck's are affinely independent and are in fact the ver-

tices of an m-simplex whose interior contains the origin. Hence (iv) Implies

(1i). 0

A
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The following theorem applies to arbitrary cones but may be difficult

to Implement if the cones are not polyhedral.

THEOREM 7 The following procedure decides correctly whether a given sequence

(Cl...,+ C 1 ) of cones in Rm is an S-system:

(1) Select points P1 I Cl,...,pM+ l C Cm+1

(2) Decide whether there exists a nonzero z c R7 such that p zt > 0

for all k . If so, stop; (Cl,...,Cm+) is not an S-system.

(3) For each r,s with 1 : r < s : m+ I , form the linear hull Hrs

of {Pk : r 0 k 0 s) . Decide whether Hrs intersects Cr and

whether H intersects C . If a nonempty intersection is
rs s

found, stop; (C,.,Cm+I ) is not an S-system

(4) If Cr n Hrs 0 0 C8 n Hrs for all r < s then (C1,...,Cm+ I)

is an S-system

Proof. If there exists a z as in (2) then {p1 ,...,p+ 1 } lies in a

closed halfspace whose bounding hyperplane passes through the origin. Hence

the origin is not interior to the convex hull of the sk'S and (C,,...,

is not an S-system. If no such z exists then each m of the points pI,'...

p m+1 are linearly independent and each Hrs is a hyperplane. If Hrs inter-

sects Cr or C8 , we see as in the proof of Theorem 6 that (Cl,...,C,+1 ) is

not an S-system. But if, in step (3), the hyperplane Hrs misses both Cr

and C then it strictly separates them; for otherwise Cr and C lie to-

Sether In a closed halfspace bounded by H , and a z would have been foundrs

(and the computation halted) in step (2). Thus if the computation progresses

past step (3), it follows from Theorem 6 that (C1,...,C,9 ) Is an S-system. 0

_ _ _ L
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When the cones Ck are polyhedral, the selection of the

in step (1) and the consistency tests in steps (2) and (3) can be car-

ried out by means of various linear program ng methods. In particular,

Phase I of Dantzig's simplex method [5] is applicable, as in the recent

Shor-Khachian method [15, 31). In view of nmerous reports of computa-

tional experience with these two methods [3, 5, 6, 25, 32], we may say

that each leads to a "good" algorithm for recognizing polyhedral S-systems.

The recognition algorithm based on the simplex method is good in the sense

that it is usually very efficient in practice, even though its worst-case

behavior is not polynomially bounded [16). The recognition algorithm based

on the Shor-Khachian method is good in the sense that it is polynomially

bounded (see Theorem 8), even though it is usually very inefficient in

practice. It would be very nice, for the recognition of polyhedral S-systems

as well as for solving linear programming problems, to have an algorithm that

is good in both senses!

THEOREM 8 By using the procedure of Theorem 7 in conjunction with the

Russian method for linear inequalities, the problem of recognizing polyhedral

S-syetems can be solved in polynomial time and space on a deterministic Tur-

ing machine. SpecificaZly, when each of the cones C ,... ,Cm+ I in R7 is

given by a system of linear inequalities with integer coefficients and E

is the length of the binary encoding of the input data, the algorithm decides

in time O(m E) whether (C,...,C 1) is an S-system.

Proof. It follows from Khachian's analysis [15) of the Shor-IKachian

algorithm [15, 31J that a polynomially bounded algorithm for recognizing

polyhedral S-systems is obtained if one Implements the procedure of Theorem 7
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by suitable use of the SK-algorlthm to find the points Pk and to make

the required consistency tests. Khachian's paper [15) is an extended

abstract, without proofs, but proofs and various improvements have

appeared in technical reports issued subsequently by many operations

researchers, computer scientists and mathematicians. We mention Gdcs and

Lovfisz (8), Aspvall and Stone [1]. and especially Padberg and Rao [26, 27]

who have an improvement of the SK-algorithm that they call the Russian

method for linear inequalities. Our discussion is based on that of Padberg

and Rao.

In order to handle both strong and weak linear inequalities, let us

assume that for each k there are finite sets Yk and Zk  of nonzero

lattice points in Rm  such that

Ck - {xc Rm : ytx > 0 for all y e Y and ztx ; 0 for

all z C Zk.

The set Zk may be empty, but we may assume Yk is nonempty for otherwise

0 C Ck and (C1,...,Cn 1 ) is not an S-system. Equality constraints w tx - 0

are handled, as usual, by Including both w and -w in the set Zk . In

particular, if Ck  is of the form Q(Vk) , (u,,...um) is the standard basis

for Rm , and t of VkIs coordinates are 0 , then Yk includes ui or

-u Ifor m - t values of i and Zk Includes both u: and -ui for the

remaining t values of I

For each k let nk - k[ + IZkI I let bk be the point of R k

whose first 1Yk coordinates are 1 and last IZk[ coordinates are 0

let Ak - (akj) be the nk x m matrix whose first Yk' rove are the
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vectors yt for y e Yk and last Z kI rows are the vectors zt

for z c Zk ,and let

Dk {x c Rm : Akx bk c Ck .

Note that a linear subspace of Rm intersects Ck if and only if it

intersects Dk . Thus it is permissible, in following the procedure

described in Theorem 7, to work with the Dk 'a rather than the C's

If we adopt the special convention that log20 = 0 , the length of

the binary encoding of the description of Dk (or of Ck ) may be taken

as

Ek - I+ Llog2"J +L.,

where

Lk - 2 + Llog 2 YkJ + Llog2nkJ + 2m k + X 1 -1 L10g2 1ajj

Here lykI denotes cardinality and lak I denotes absolute value. We

assume that for each integer x , 1 + log 2LxJ bits are used to represent

xl and an additional bit represents the sign of x if the problem's

formulation does not automatically require x > 0 (as it does when x is

m or nk ). The length of the encoding of the description of the system

(CID,..., 9+ is defined as

Ea I+ Llogmj + M- 1 Lk

It Is easy to quibble in minor ways with these definitions of the Ek 'a

and of E , but such quibbles do not affect the validity of our theorm.

Let

Fk - I + Lo 2Mj + Ak,

where Ak is the maximum of the absolute values of the determinants of
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the square submatrices of the matrix [A , bk J , and let

D- fx cD Ixi1: - for all Ii
k I 2Fm

It follows from the discussion of Padberg and Rao [26, 27) that Fk : Ek 

nonemptiness of Dk implies nonemptiness of D' , and the Russian method

kk
yields a point k E D; in time (and space) O(m3Fk) . Thus the complexity

of step (1) in the procedure of Theorem 7 is
m+l1

O(m Jk =lFk) S O(m E) .

With Pk c D for 1 5 k 5 m + I , the consistency problem of step (2)

admits a binary encoding of length O(E) and hence step (2) is handled in

time O(m3) by the Russian method.

To form the linear hull Hrs of Pk: r k # s , as required by
rs{p

step (3), let Mrs be the (m - 1) x m matrix whose columns are the Pk's

for r # k i s ; then use the Russian method (or elementary column operations)

to find a nonzero q such that qt - 0 and all coordinates of
3rs rsrs

q are less than E in absolute value. This can be done in time O(m3 E) ,

and then

rs rs

Testing whether H intersects Cr or C is also of complexity 0(m E)

if the Russian method is used. Since there are m(m + 1)/2 pairs (r, s)

to contend with, the overall complexity of step (3) and of the entire algo-

rithm Is O(m5E) . 0
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5. Open Problems

If each (n + 1) x n NW-matrix can be generated from smaller ones by

the method of Theorem 2, then each S-matrix has at least one row in which

there are at most two nonzero entries. Gorman has conjectured that this is

so and can be used as the basis of a fast algorithm for recognizing S-matrices.

Let 0(m, n) denote the number of equivalence classes of m x n NW-

matrices. What can be said about the asymptotic behavior of the function 4,

or about its values for small (m, n) ? There is special interest in

O(n + 1, n) , the number of equivalence classes of n x (n + 1) S-matrices.

We have seen that 0(2,1) - 1, t(3,2) = 2, 0(4,3) - 10 . What is 0(5,4) ?

Consider the problem of recognizing whether a given m x n matrix is

an NW-matrix. As we have seen, this problem can be solved in polynomial time

when m - n + I but is NP-complete when m - n + Ln /k for an arbitrary

fixed k > 0 . What happens when m - n + k for a fixed k > 1 ?

For each n let h(n) denote the smallest integer r that has the

following property: whenever a Boolean formula is in conjunctive normal

form, involves a total of n propositional variables, and is not weakly

satisfiable, then some subformula, consisting of the conjunction of h(n)

or fewer of the clauses of the original formula, is not weakly satisfiable.

It is easy to see that 2n S h(n) S3 - 1 . Plainly h(l) a 2 and it can

be verified that h(2) * 4 * Is h(n) always equal to 2n ?

For each x e Rn {0) , let U(x) denote the set of all unit vectors

u a in such that u veakly satisfies c . Since U(x) depends only Q(x) ,

there are only P - I sets of the form U(x) for x c Rn (0) . For

example, when n - 2 there are four sets like each of the samples shown in

Fig. 9.
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x)

Ux)

Fig. 9: The two types of sets U(x) for x c R {0)

Let us use the term U -Bet to denote a set of the form U(x) forn

x c Rn - {0} . Then h(n) is the smallest k such that whenever each

k members of a family of Un-sets have a common point, the entire

family has nonempty intersection. Thus h(n) is a Helly number in the

sense of Danzer, Grinbaum and Klee [7]. It seems possible that methods

similar to those of Grinbaum and Motzkin [133 would be useful in deter-

mining h(n)

For each cone K in ,let W(K) denote the set of all

v e Rn - {01 such that wtk Z 0 for each k c K . For each family

IS of cones, let (Q) - {W(K) : K e and let H() denote the Helly

number of W(K) . Then h(n) is H({Q(x) : x c Rn - {01) . What can be

said about H(K) for other Interesting choices of K ?

L ... .... ........ .... ... .... ...
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